Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures.

Identifieur interne : 002152 ( Main/Exploration ); précédent : 002151; suivant : 002153

Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures.

Auteurs : Susanna Pollastri [Italie] ; Tsonko Tsonev ; Francesco Loreto

Source :

RBID : pubmed:24676032

Descripteurs français

English descriptors

Abstract

Isoprene-emitting plants are better protected against thermal and oxidative stresses. Isoprene may strengthen membranes avoiding their denaturation and may quench reactive oxygen and nitrogen species, achieving a similar protective effect. The physiological role of isoprene in unstressed plants, up to now, is not understood. It is shown here, by monitoring the non-photochemical quenching (NPQ) of chlorophyll fluorescence of leaves with chemically or genetically altered isoprene biosynthesis, that chloroplasts of isoprene-emitting leaves dissipate less energy as heat than chloroplasts of non-emitting leaves, when exposed to physiologically high temperatures (28-37 °C) that do not impair the photosynthetic apparatus. The effect was especially remarkable at foliar temperatures between 30 °C and 35 °C, at which isoprene emission is maximized and NPQ is quenched by about 20%. Isoprene may also allow better stability of photosynthetic membranes and a more efficient electron transfer through PSII at physiological temperatures, explaining most of the NPQ reduction and the slightly higher photochemical quenching that was also observed in isoprene-emitting leaves. The possibility that isoprene emission helps in removing thermal energy at the thylakoid level is also put forward, although such an effect was calculated to be minimal. These experiments expand current evidence that isoprene is an important trait against thermal and oxidative stresses and also explains why plants invest resources in isoprene under unstressed conditions. By improving PSII efficiency and reducing the need for heat dissipation in photosynthetic membranes, isoprene emitters are best fitted to physiologically high temperatures and will have an evolutionary advantage when adapting to a warming climate.

DOI: 10.1093/jxb/eru033
PubMed: 24676032
PubMed Central: PMC3967094


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures.</title>
<author>
<name sortKey="Pollastri, Susanna" sort="Pollastri, Susanna" uniqKey="Pollastri S" first="Susanna" last="Pollastri">Susanna Pollastri</name>
<affiliation wicri:level="1">
<nlm:affiliation>The National Research Council of Italy (CNR), Department of Biology, Agriculture and Food Sciences, Institute for Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>The National Research Council of Italy (CNR), Department of Biology, Agriculture and Food Sciences, Institute for Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence)</wicri:regionArea>
<wicri:noRegion>50019 Sesto Fiorentino (Florence)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tsonev, Tsonko" sort="Tsonev, Tsonko" uniqKey="Tsonev T" first="Tsonko" last="Tsonev">Tsonko Tsonev</name>
</author>
<author>
<name sortKey="Loreto, Francesco" sort="Loreto, Francesco" uniqKey="Loreto F" first="Francesco" last="Loreto">Francesco Loreto</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24676032</idno>
<idno type="pmid">24676032</idno>
<idno type="doi">10.1093/jxb/eru033</idno>
<idno type="pmc">PMC3967094</idno>
<idno type="wicri:Area/Main/Corpus">002252</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002252</idno>
<idno type="wicri:Area/Main/Curation">002252</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002252</idno>
<idno type="wicri:Area/Main/Exploration">002252</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures.</title>
<author>
<name sortKey="Pollastri, Susanna" sort="Pollastri, Susanna" uniqKey="Pollastri S" first="Susanna" last="Pollastri">Susanna Pollastri</name>
<affiliation wicri:level="1">
<nlm:affiliation>The National Research Council of Italy (CNR), Department of Biology, Agriculture and Food Sciences, Institute for Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>The National Research Council of Italy (CNR), Department of Biology, Agriculture and Food Sciences, Institute for Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence)</wicri:regionArea>
<wicri:noRegion>50019 Sesto Fiorentino (Florence)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tsonev, Tsonko" sort="Tsonev, Tsonko" uniqKey="Tsonev T" first="Tsonko" last="Tsonev">Tsonko Tsonev</name>
</author>
<author>
<name sortKey="Loreto, Francesco" sort="Loreto, Francesco" uniqKey="Loreto F" first="Francesco" last="Loreto">Francesco Loreto</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (chemistry)</term>
<term>Arabidopsis (physiology)</term>
<term>Butadienes (metabolism)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Chlorophyll (metabolism)</term>
<term>Chloroplasts (metabolism)</term>
<term>Electron Transport (MeSH)</term>
<term>Hemiterpenes (metabolism)</term>
<term>Hot Temperature (MeSH)</term>
<term>Pentanes (metabolism)</term>
<term>Photosynthesis (physiology)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (physiology)</term>
<term>Populus (chemistry)</term>
<term>Populus (physiology)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Tobacco (chemistry)</term>
<term>Tobacco (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (composition chimique)</term>
<term>Arabidopsis (physiologie)</term>
<term>Butadiènes (métabolisme)</term>
<term>Chlorophylle (métabolisme)</term>
<term>Chloroplastes (métabolisme)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Hémiterpènes (métabolisme)</term>
<term>Pentanes (métabolisme)</term>
<term>Photosynthèse (physiologie)</term>
<term>Populus (composition chimique)</term>
<term>Populus (physiologie)</term>
<term>Stress physiologique (MeSH)</term>
<term>Tabac (composition chimique)</term>
<term>Tabac (physiologie)</term>
<term>Température élevée (MeSH)</term>
<term>Transport d'électrons (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Butadienes</term>
<term>Carbon Dioxide</term>
<term>Chlorophyll</term>
<term>Hemiterpenes</term>
<term>Pentanes</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Leaves</term>
<term>Populus</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chloroplasts</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Butadiènes</term>
<term>Chlorophylle</term>
<term>Chloroplastes</term>
<term>Dioxyde de carbone</term>
<term>Hémiterpènes</term>
<term>Pentanes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Populus</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electron Transport</term>
<term>Hot Temperature</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Stress physiologique</term>
<term>Température élevée</term>
<term>Transport d'électrons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Isoprene-emitting plants are better protected against thermal and oxidative stresses. Isoprene may strengthen membranes avoiding their denaturation and may quench reactive oxygen and nitrogen species, achieving a similar protective effect. The physiological role of isoprene in unstressed plants, up to now, is not understood. It is shown here, by monitoring the non-photochemical quenching (NPQ) of chlorophyll fluorescence of leaves with chemically or genetically altered isoprene biosynthesis, that chloroplasts of isoprene-emitting leaves dissipate less energy as heat than chloroplasts of non-emitting leaves, when exposed to physiologically high temperatures (28-37 °C) that do not impair the photosynthetic apparatus. The effect was especially remarkable at foliar temperatures between 30 °C and 35 °C, at which isoprene emission is maximized and NPQ is quenched by about 20%. Isoprene may also allow better stability of photosynthetic membranes and a more efficient electron transfer through PSII at physiological temperatures, explaining most of the NPQ reduction and the slightly higher photochemical quenching that was also observed in isoprene-emitting leaves. The possibility that isoprene emission helps in removing thermal energy at the thylakoid level is also put forward, although such an effect was calculated to be minimal. These experiments expand current evidence that isoprene is an important trait against thermal and oxidative stresses and also explains why plants invest resources in isoprene under unstressed conditions. By improving PSII efficiency and reducing the need for heat dissipation in photosynthetic membranes, isoprene emitters are best fitted to physiologically high temperatures and will have an evolutionary advantage when adapting to a warming climate. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24676032</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>11</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>65</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures.</ArticleTitle>
<Pagination>
<MedlinePgn>1565-70</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/eru033</ELocationID>
<Abstract>
<AbstractText>Isoprene-emitting plants are better protected against thermal and oxidative stresses. Isoprene may strengthen membranes avoiding their denaturation and may quench reactive oxygen and nitrogen species, achieving a similar protective effect. The physiological role of isoprene in unstressed plants, up to now, is not understood. It is shown here, by monitoring the non-photochemical quenching (NPQ) of chlorophyll fluorescence of leaves with chemically or genetically altered isoprene biosynthesis, that chloroplasts of isoprene-emitting leaves dissipate less energy as heat than chloroplasts of non-emitting leaves, when exposed to physiologically high temperatures (28-37 °C) that do not impair the photosynthetic apparatus. The effect was especially remarkable at foliar temperatures between 30 °C and 35 °C, at which isoprene emission is maximized and NPQ is quenched by about 20%. Isoprene may also allow better stability of photosynthetic membranes and a more efficient electron transfer through PSII at physiological temperatures, explaining most of the NPQ reduction and the slightly higher photochemical quenching that was also observed in isoprene-emitting leaves. The possibility that isoprene emission helps in removing thermal energy at the thylakoid level is also put forward, although such an effect was calculated to be minimal. These experiments expand current evidence that isoprene is an important trait against thermal and oxidative stresses and also explains why plants invest resources in isoprene under unstressed conditions. By improving PSII efficiency and reducing the need for heat dissipation in photosynthetic membranes, isoprene emitters are best fitted to physiologically high temperatures and will have an evolutionary advantage when adapting to a warming climate. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pollastri</LastName>
<ForeName>Susanna</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>The National Research Council of Italy (CNR), Department of Biology, Agriculture and Food Sciences, Institute for Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tsonev</LastName>
<ForeName>Tsonko</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Loreto</LastName>
<ForeName>Francesco</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010420">Pentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="N">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010420" MajorTopicYN="N">Pentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Chloroplast functionality</Keyword>
<Keyword MajorTopicYN="N">climate change</Keyword>
<Keyword MajorTopicYN="N">fluorescence quenching</Keyword>
<Keyword MajorTopicYN="N">high temperature</Keyword>
<Keyword MajorTopicYN="N">isoprene</Keyword>
<Keyword MajorTopicYN="N">photosynthesis</Keyword>
<Keyword MajorTopicYN="N">stress physiology.</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>11</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24676032</ArticleId>
<ArticleId IdType="pii">eru033</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/eru033</ArticleId>
<ArticleId IdType="pmc">PMC3967094</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:407-436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Apr;9(4):180-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15063868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1996 Jul;16(7):649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2011 Jul;142(3):297-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21361963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Jan;7(1):139-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22301981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 May;32(5):520-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19183288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 Feb;1768(2):198-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17125733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Oct;157(2):905-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21807886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Mar;15(3):133-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Sep;10(9):420-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16098785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Dec;115(4):1413-1420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1936 Apr;11(2):343-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16653347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:89-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Feb;137(2):700-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Sep;32(9):1066-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22887371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2010 Apr;104(1):49-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19915954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1990 Jul;181(4):547-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24196936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2009 Jul;11(4):625-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19538400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Apr 30;304(5671):722-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15118159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Jan 6;400(3):271-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9009212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1781-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2011 May;166(1):273-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21380850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Apr 13;316(5822):212-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17431162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Aug;51(3):485-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Mar;15(3):154-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133178</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Loreto, Francesco" sort="Loreto, Francesco" uniqKey="Loreto F" first="Francesco" last="Loreto">Francesco Loreto</name>
<name sortKey="Tsonev, Tsonko" sort="Tsonev, Tsonko" uniqKey="Tsonev T" first="Tsonko" last="Tsonev">Tsonko Tsonev</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="Pollastri, Susanna" sort="Pollastri, Susanna" uniqKey="Pollastri S" first="Susanna" last="Pollastri">Susanna Pollastri</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002152 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002152 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24676032
   |texte=   Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24676032" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020